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Introduction 
 
 Few papers have addressed the issue of detection or identification of field-level features in agricultural field 
crops with hyperspectral remote sensing (Green et al., 1998; Gat et al., 1999).  Multispectral images have been used 
to identify certain field stresses and anomalies such as diseases, weeds, and mites (Brown et al., 1994; Peñuelas et 
al., 1995; Summy, et al., 1997) but the limited spectral coverage may not allow unique identification, only that an 
anomaly is present.  The large amount of information available for analysis in hyperspectral imagery permits the 
application of advanced image analysis techniques designed to extract unique data features from high dimensional 
data sets and reduce complexity to make the data more interpretable.  Spectral Mixture Analysis (SMA) assumes 
that a small number of spectra representing the scene components of interest (endmembers) can describe most of the 
spectral variation in a scene and be used to “unmix” the pixels and determine the relative fractional abundance of 
each component on a per-pixel basis.  This approach could allow discrimination of one plant stress from another 
through identification of unique spectral features or differences in the shapes of the spectral curves.  The abundance 
maps produced could indicate both the spatial extent and severity of stresses.  This would permit a farm manager or 
scout to locate precisely the identified stress in a field, providing for guided field scouting and precision application 
of appropriate control measures such as pesticides or biological control agents.  This procedure has been well 
documented in geological and ecological studies (Adams et al., 1995; Adams and Smith, 1986; Elmore et al., 2000; 
Mustard, 1993; Okin et al., 2001; Roberts et al., 1993; Roberts et al., 1998; Smith et al., 1990) but has had little to 
no application in precision agriculture. 
 
 The strawberry spider mite, Tetranychus turkestani causes severe damage to cotton in the San Joaquin 
Valley in California.  These mites feed on plants causing leaf puckering and reddish discoloration in early stages of 
infestation and leaf drop later (Anonymous, 1996).  Because of the leaf color change, and perhaps physiological 
changes not visible to the naked eye it was hypothesized that the spectral signature of mite-damaged leaves might 
provide a method to detect the pest.  The objective of this paper was to develop ground-based reference spectral 
signatures of various scene components (endmembers) in field-grown cotton in order to unmix AVIRIS imagery 
using spectral mixture analysis and determine if the fraction maps could accurately discriminate between a field of 
healthy cotton and an adjacent field of mite-damaged cotton.  Additionally, it was expected that the SMA procedure 
would provide endmember abundance fraction maps delivering spatially explicit maps of mite damage severity. 
 
Materials and Methods 
 
 An experiment was established on two, 2.8 ha research fields at the USDA-ARS research station in Shafter, 
CA (35.5° N, 119.3° E., 120 meters above sea level).  Each field was planted to cotton (Gossypium hirsutum L. 
variety “Maxxa”) on May 4, 1999.  Both were managed according to standard cultural practices for cotton in the 
area except that one (field 41) was sprayed once with a wide spectrum pesticide about eight weeks after planting, 
virtually eliminating mites as well as beneficial arthropods which normally keep mite populations in check.  The 
other (field 42) was treated with appropriate pesticides several times during the growing season to control spider 
mite infestations.  For reference, Figure 1 shows near-infrared images of fields 41 and 42 acquired from a high 
resolution multispectral system (Fitzgerald et al., 1999b) and one band from AVIRIS.  Weekly mite counts were 
performed to monitor their temporal and spatial distribution within each of the fields (Anonymous, 1996).   Visual 
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records were kept noting areas of obvious mite damage throughout the season.  Both fields were irrigated with sub-
surface drip irrigation leaving the soil surface dry all season. 
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Figure 1a.  High resolution (0.65 m) near-infrared image (850 nm) of cotton research 
fields 41 and 42 acquired on 25 Aug 1999.  In field 41, mites were allowed to damage the 
cotton while in field 42 mites were controlled.  Fields 41 and 42 each had dimensions of 
100m X 300m.  Figure 1b.  AVIRIS image (band 41, 845 nm, 18 m pixel resolution) of 
the same fields acquired 28 Aug 1999.  

 
 
 A digital camera system consisting of visible and near-infrared “Varispec” liquid crystal tunable filters 
(LCTF) from Cambridge Research Instrumentation, Inc., Woburn, MA and a digital camera from PixelVision (Pluto 
model, 14-bit, cooled, 512 X 512 pixels) were mounted on a high clearance vehicle capable of entering cotton fields 
with the operator aboard a platform mounted on top.  The liquid crystal filters are tuned electronically to allow 
narrow band wavelengths of light to pass through to the digital camera.  The camera shutter and filter are 
synchronized so that an image is acquired when the filter switches to a new waveband.  This system recorded 
images in 10 nm increments from 400 to 1050 nm.  At a height of three meters above the soil, pixel resolution was 
about one mm.  Images were calibrated to reflectance using a 99% “Spectralon” calibration panel which was placed 
in the field of view before and after image acquisition. 
 
 Imagery from AVIRIS was acquired for the research fields on four separate dates in 1999.  Flight dates, 
local times, and solar zenith angle are shown in Table 1.  The hyperspectral data cube from AVIRIS was composed 
of 224 images acquired contiguously from 400-2500 nm in approximately 10 nm bands.  The AVIRIS data sets were 
atmospherically corrected and converted to reflectance using ATREM and EFFORT algorithms.  Ground pixel 
resolution was 18 m. 
 
 

Table 1.  AVIRIS overflight dates, local times (PDT), and solar zenith angles. 
 

Overflight Date Local Time (PDT) Solar Zenith 
13 Jun 1999 11:29 am 22.7° 
28 Aug 1999 12.09 pm 27.9° 
1 Sep 1999 10:07 am 49.3° 
24 Sep 1999 11:43 am 38.9° 

 
 
 Images acquired from the LCTF system were used to build a spectral library containing representative 
spectra (endmembers) that included sunlit healthy leaves (H), sunlit mite-damaged leaves (M), sunlit tilled soil (S), 
shaded tilled soil (Sh), and sunlit dead leaf (D).  Pixels from each waveband representing the particular endmember 
(Fig. 2) were selected to build the spectral library (Fig. 3). 
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Figure 2.  Liquid crystal tunable filter images showing scene components (endmembers).  Each image 
represents about 0.15 m2 (1.5 ft2). 
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Figure 3.  Spectral library endmembers derived from selected regions in the liquid crystal 
tunable filter imagery (see Figure 2).  The error bars on the M endmember line represent 
±1 standard error.  Standard errors for the other curves were too small to show clearly. 

 
 
 The AVIRIS image cubes were masked to include only the fields of interest and then spectrally resampled 
to match the wavelengths of the LCTF spectral library.  This resulted in 57 wavebands in 9.5 nm increments from 
459 to 1002 nm.  Spectral mixture analysis was then performed on the four AVIRIS images using the built-in linear 
spectral unmixing (LSU) routine in the ENVI software package (Better Solutions Consulting, Inc., Lafayette, CO).  
Analysis parameters were set to constrained unmixing with a weight of 10 which constrained the endmember 
fractions within each pixel to sum to unity.  If the proper endmembers have been chosen for each pixel then the 
abundance fractions should be positive, the sum of all the abundance fractions (excluding the RMSE image) should 
equal unity, and the pixels should have a low RMSE (Smith et al., 1990; Roberts et al., 1998).   
 
 It was noticed in the fraction images that negative values occurred whenever a pixel contained an 
endmember that was not present at the time of image acquisition, e.g., pixels chosen over areas of known dense 



 

 

canopy showed negative soil fractions or pixels from healthy vegetation (field 42) had negative M endmember 
fractions).  Thus, a procedure was developed to assign variable numbers of endmember to the pixels.  The criteria 
for assigning valid endmembers to each pixel was, 1) endmember sign (positive values retained, negative values 
assigned zero values), and 2) RMSE (whenever models of equal value occurred, the one with the lowest RMSE was 
selected).  The number of potential endmembers was limited because the fields were not as heterogeneous as, say a 
regional image containing roads, lakes, urban features, etc. as discussed in Roberts et al. (1998).  Thus, based on 
knowledge of the field and the fact that the objective of the study was to identify mite areas only, the five 
endmembers in Figure 3 were chosen as those representing the bulk of the variance in the fields.  The iterative 
process to choose variable number of endmembers per pixel began with the five endmembers and flagged pixels 
with negative endmembers.  The flagged pixels were re-analyzed with four endmembers, followed by three and two 
endmember models, consecutively.  At each stage, if a set of endmembers was equally valid (e.g., two, three-
endmember models contained positive values) then the one with the lowest RMSE was selected.  This continued 
until all pixels were assigned endmembers. 
 
Results 
 
 The combination of endmembers that consistently had the lowest RMSE, summed to unity, and correctly 
located known areas of mite damage, healthy plants, and soil was the combination that included the S, M, H, and Sh 
endmembers, except for the 13 Jun image that did not include the Mite endmember because mites were not present.  
Whenever Sh was excluded from the unmixing analysis, the sum of endmember abundances ranged from 0.60 to 
0.92.  When Sh was included, all pixel abundances summed from 0.99 to 1.00.  A spectrum representing dead leaves 
was initially included in the unmixing procedure to account for non-photosynthesizing vegetation (NPV) but 
fraction values were always negative so they were excluded from further analysis.   
 
 Pixels forming Regions of Interest (ROI) were visually selected for field 41, field 42, and the dirt road 
around the fields.  These represented the mite-damaged canopy, healthy canopy, and soil/dirt road areas, 
respectively.  Table 2 shows the mean values of these regions and Figure 4 shows the abundance image maps 
indicating the spatial distribution and intensity of these endmembers (bright pixels indicate high abundance fraction 
values and black pixels equal zero). 
 
 

Table 2. Fractional abundance means by endmembers for Regions of Interest  
  selected within fields 41, 42, and the dirt roads surrounding the  
  cotton fields.  Zero values indicate absence of endmembers. 

 
Field 41 13 Jun 99 28 Aug 99 1 Sep 99 24 Sep 99 
Soil 0.650 0.012 0 0.027 
Mite 0 0.092 0.010 0.044 
Healthy 0.043 0.344 0.240 0.280 
Shade 0.307 0.552 0.750 0.649 
RMSE 0.018 0.021 0.016 0.015 
Field 42 
Soil 0.650 0 0 0  
Mite 0 0 0 0.020 
Healthy 0.046 0.630 0.400 0.401 
Shade 0.304 0.370 0.600 0.579 
RMSE 0.019 0.053 0.042 0.027 
Road 
Soil 0.882 0.715 0.464 0.576 
Mite 0 0 0 0  
Healthy 0 0.073 0.049 0.070 
Shade 0.117 0.212 0.486 0.354 
RMSE 0.027 0.018 0.019 0.015 
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Figure 4.  Fractional abundance image maps produced from spectral unmixing of the 
four AVIRIS image cubes.  Highest to lowest values are represented by brightest to 
darkest pixels.  Black pixels have zero value.  All values were zero for the M 
endmember abundance map on 13 Jun 1999. 

 
 
 On 13 Jun 1999, the mean values from the two fields for the four endmembers and RMSE were essentially 
the same (Table 2).  This was expected since mite damage had not yet occurred and all other factors were equal 
(irrigation, planting date, cultural practices, etc.).  By 28 Aug 1999, mites had been present for seven weeks and the 
unmixing procedure correctly showed that field 41 had mite-damaged cotton plants whereas field 42 did not.  Since 
the 1 Sep 1999 overflight occurred only four days later, little difference should be expected between the two in 
terms of relative endmember fractions.  The differences in endmember fractions noted in Table 2 between the two 
dates can be attributed to the amount of Sh fraction.  The solar zenith angle was much greater for 1 Sep than 28 Aug 
(Table 1) resulting in a greater Sh component and consequently lower fraction values for the other endmembers.  
The relative differences however were maintained (H > M > S).  Pixels with greater M fraction values were located 
in the same areas in field 41 on both dates (Fig. 4) showing a consistent pattern. 
 
 By 24 Sep 1999, a few weeks before harvest, senescence became a dominant feature.  Some pixels in 
Figure 4 are brighter for the M endmember and darker for the H endmember in field 42.  Also, the location of bright 
pixels for the M images in field 41 (Fig. 4) changed from the previous two dates.  When cotton senesces, it tends to 
form red spots on its leaves.  The spectral signature from the reddish senescent vegetation undoubtedly resembled 
that of the M endmember (Fig. 3). 
 
 The S fraction was always greatest for the Road region and non-existent in field 42 once full canopy was 
established (Table 2).  The dirt roads around the fields are clearly identified in the S fractions in Figure 4.  Some 
vegetation was present in the pixels selected for the Road ROI as evidenced by small positive H endmember values 
in Table 2.  This is reasonable since the 18m pixels would have encompassed edges of the fields as well as road. 
 
 The Sh endmember pixels were brightest where there was more canopy variability along the edges of the 
fields and in the mite infested and sparse canopy regions where there was a mix of canopy and soil (Fig. 4).  The 
mean Sh fraction values were always greatest in field 41 and lowest in the Road ROI within a given date (Table 2).  
This seems to indicate there was more shade in more heterogeneous parts of the scene, a reasonable outcome. 



 

 

 
 The highest RMSE values occurred for healthy vegetation, for example in field 42 (Table 2, Fig. 4) 
probably due to calibration errors between the LCTF and AVIRIS imagery.  The H endmember spectrum differed 
somewhat from the healthy canopy spectrum derived from the AVIRIS imagery (not shown).  However, shapes of 
the curves were fundamentally similar showing the characteristic red edge and green peaks.  It is likely the greater 
RMSE for the H endmember was due to imperfect curve fitting by SMA.  Despite this, the routine is obviously 
robust enough to match the endmember and AVIRIS spectra, and overall results show good correlations to known 
ground conditions. 
 
Discussion 
 
 Mite detection early in the season is critical if the farm manager is to use imagery as a decision aid for 
control.  In this respect, these AVIRIS images are not useful since the acquisition times did not correspond to early 
mite infestations and the large pixel size would not allow early identification of a few mite-infested plants occupying 
a minute percentage of a pixel, even using SMA techniques.  Additionally, under normal farming practices, mite 
damage would never be allowed to progress to the degree of damage present in field 41.  However, these conditions 
were advantageous for mite detection in this study because of the contrast between severe and light or non-existent 
mite damage in the two fields and the spatially extensive damage within field 41. 
 
 There are several measures of success for the unmixing procedure in this analysis.  One, the plant and soil 
conditions in field 41 and 42 were essentially the same on 13 Jun so it is encouraging to find the mean fraction 
values for these fields are so similar.  Two, there were no false positives for selection of the M endmember in field 
42.  All M endmembers were selected in field 41.  Three, the S fraction consistently was greatest over the dirt road 
and showed low values in field 41 but was not present in field 42 once full canopy was established.  Four, the 
relative brightness and locations of abundance fractions from 28 Aug and 1 Sep, which were acquired only four days 
apart, are similar (Fig. 4).  However, because the solar zenith angles are different, the abundance fractions are not 
the same (Table 2).  It appears that it can be difficult to compare the abundance fractions across dates.  There may be 
a temporal or non-linear component tied to the shade endmember since this changed with zenith angle and the Sh 
fraction differed on each date.  Perhaps other shade endmembers should have been included in the analysis, such as 
shaded healthy leaves and shaded mite-damaged leaves. 
 
 The LSU procedure in the ENVI software outputs images with the same number of endmembers for every 
pixel.  This is not realistic since there is spatial variability across images not just in terms of quantity (endmember 
abundance) but also in quality (which endmembers are present).  Removing unrealistic (negative) endmembers 
resulted in pixels with varying numbers of endmembers (2-4) and is similar conceptually to the multiple endmember 
selection method presented by Roberts et al. (1998).  The result shows abundance images that match known ground 
conditions.  This procedure therefore incorporated both spectral and spatial variability.  The comparison across four 
dates allowed a measure of temporal change to be incorporated into the analysis which is critical for agriculture.  
The resulting images showed both consistent features and explainable changes in the crop (Fig. 4).  
 
 In the near future, high spatial resolution hyperspectral imagery will be available that can pinpoint with 
greater accuracy the locations of stressed plants.  Frequent image acquisition would allow temporal changes to be 
monitored, and early signs of problems could be detected.  The utility of hyperspectral remote sensing for precision 
agriculture comes, in part, from the potential to identify stressed areas in fields early enough for the farm manager to 
make timely decisions.  However, it remains to be seen whether early detection can be accomplished and is, 
therefore, a fertile area for research. 
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